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• Currently, all energy deposition is local
– All energetic particles born in a zone deposit 100% of their energy in that 

zone

• Charged particles deposit energy over 10s to 100s of microns.

• As advanced hardware and ICF capsule design drives zone sizes 
below this threshold, local deposition is no longer a good 
approximation.

• Motivates implementation of a Monte Carlo charged particle transport 
package
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• All equations implemented must use SI units!
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• As particles move around, they undergo two types of interactions:
– Small angle scatter
– Catastrophic interactions
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• Small angle scatter is dominated by Coulombic interactions
– Each small path length can be treated as a line
– Advance the particle, compute the energy loss, repeat
– Assume that on average, scatters cancel out and the particle travels in a 

straight line

• Catastrophic interactions result in the particle being killed off
– Local energy deposition wherever the particle is
– Not modeled yet

• Currently, particles travel in a straight line and deposit energy as they 
trave.
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• Consider a charged particle flying through a “tunnel” of ions
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• The particle slows as it is repelled
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• Halfway, there is no net force on the particle
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• On the way out, the particle is repelled and accelerates. It gains the 
same amount of energy it lost going in.
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• How can charged particle interactions result in an energy transfer?
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• As the particle approaches, it accelerates the ions and they move 
further away
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• And the particle is not accelerated while leaving as much as it was 
decelerated entering

+

+

+
+

+

+
+

The energy imparted to the ions is 
equal to the loss in energy of the 
charged particle due to the 
displacement of the ions

Timescale is very important!
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5 keV, D-T plasma

3.5 MeV α
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• DT Ions (m = ~2.5 amu, E = 5 keV)
– Speed: 62.1 cm/μs

• DT Electrons (m = 0.00055 amu, E = 5 keV)
– Speed: 4190 cm/μs

• Charged Particle (m = 4.0 amu, E = 3.5 MeV)
– Speed: 1300 cm/μs
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• As the charged particle interacts with electrons, it loses energy
• Eventually, the particle is going at approximately the same speed as 

the ions and much slower than the electrons



Theory

02/13/2019   |   22Los Alamos National Laboratory

• Dominant interaction changes over time
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• At some point, the particles drop to the same temperature as the 
background plasma and stop losing energy altogether
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• Four models

– Void

– Simple

– Analytic

– dE/dx Data

No physics – particles travel in 
straight line and do not slow 
down

Based on electrons only. Has an 
ion correction that can be turned 
on
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• Four models

– Void

– Simple

– Analytic

– dE/dx Data

Based on Plasma Formulary 
equations

Multiple datatable correlations 
available
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DoFlagDriver(kdd)
  …
  call MixDriver(mesh)
  call SBroad(‘PrePhysCycle’, mesh, dtg)  
  call SBroad(‘ChargedPtclPhys’, mesh, dtg)
  ncount = 0
  call SBroad(‘CalcEIRSrc’, mesh, ncount)
  if(ncount.gt.0)then
  …

ChargedPtclPhys(this, dtg)
  call SBroad(‘SpawnCharged’, this, dtg)
  call SBroad(‘MoveCharged’, this, dtg)

ChargedPtclSource(this, dtg)
  call SBroad(‘ChargedPtclSrcRealRate’, …)
  call SBroad(‘ChargedPtclSrcMcRate’, …)
  …
  call List_increment(…)
  call ChargedPtclSourceCreate(…)

ChargedPtclTransport(this, dtg)
  cpt_timestep = …
  substeps = …

  do j = 1, substeps
    call SBroad(‘ChargedPtclTransportStep’, …)
  enddo

  call ChargedPtclTransportStats(...)
  call ChargedPtclEnergyDep(…)
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mk /global/mesh/particle/charged_ptcls
mk +source/position/…
mk +source/direction/…
mk +source/energy/…
mk +source/zaid/…
mk +source/charge/…
mk +source/mass/…
mk +source/real_rate
mk +source/mc_rate
mk +transport/…

charged_ptcls
  source
    position
    direction
    energy
    zaid
    charge
    mass
    real_rate
    mc_rate
  transport
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Problem #1

1D Spherical

Isotropic point source

Exercises particle tracking

No physics
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Problem #2

1D Spherical

Zonal source (weighted by zone density)

Simple transport



Test Problems

02/13/2019   |   33Los Alamos National Laboratory

Problem #3

1D Spherical

Two mono-directional disk sources (1 particle node)

Energy coupling to matter

Exercises ALE+Hydro
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Problem #3 

50 Particles Per Cycle 5 < Particles Per Cycle < 500
Weight preference = 3.5E16
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Problem #4

1D Cartesian

Five mono-directional disk sources (5 particle nodes)

Apple-to-apple comparison of transport methods

Simple Simple
+

Ion Correction

Analytic
Approx.

dv/dt

Analytic
Exact
dE/dt

dE/dx Data
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Problem #5

2D Cylindrical

Zonal distribution in DT

36 cores on 1 node
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• More 2D tests
• 3D tests
• Quantitative comparison between transport methods 
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